Alabama Course of Study: Science — Grade 6


Click on any standard to search for aligned resources. This data may be subject to copyright. You may download a CSV of the Alabama Course of Study: Science if your intention constitutes fair use.


Plan, assess, and analyze learning aligned to these standards using Kiddom.

Learn more: How Kiddom Empowers Teachers.

ES.6.10

Use research-based evidence to propose a scientific explanation regarding how the distribution of Earths resources such as minerals, fossil fuels, and groundwater are the result of ongoing geoscience processes (e.g., past volcanic and hydrothermal activity, burial of organic sediments, active weathering of rock).

ES.6.11

Develop and use models of Earths interior composition to illustrate the resulting magnetic field (e.g., magnetic poles) and to explain its measureable effects (e.g., protection from cosmic radiation).

ES.6.12

Integrate qualitative scientific and technical information (e.g., weather maps; diagrams; other visualizations, including radar and computer simulations) to support the claim that motions and complex interactions of air masses result in changes in weather conditions.

ES.6.12a

Use various instruments (e.g., thermometers, barometers, anemometers, wet bulbs) to monitor local weather and examine weather patterns to predict various weather events, especially the impact of severe weather (e.g., fronts, hurricanes, tornados, blizzards, ice storms, droughts).

ES.6.13

Use models (e.g., diagrams, maps, globes, digital representations) to explain how the rotation of Earth and unequal heating of its surface create patterns of atmospheric and oceanic circulation that determine regional climates.

ES.6.13a

Use experiments to investigate how energy from the sun is distributed between Earths surface and its atmosphere by convection and radiation (e.g., warmer water in a pan rising as cooler water sinks, warming ones hands by a campfire).

ES.6.14

Analyze and interpret data (e.g., tables, graphs, maps of global and regional temperatures; atmospheric levels of gases such as carbon dioxide and methane; rates of human activities) to describe how various human activities (e.g., use of fossil fuels, creation of urban heat islands, agricultural practices) and natural processes (e.g., solar radiation, greenhouse effect, volcanic activity) may cause changes in local and global temperatures over time.

ES.6.4

Construct explanations from geologic evidence (e.g., change or extinction of particular living organisms; field evidence or representations, including models of geologic cross-sections; sedimentary layering) to identify patterns of Earths major historical events (e.g., formation of mountain chains and ocean basins, significant volcanic eruptions, fossilization, folding, faulting, igneous intrusion, erosion).

ES.6.5

Use evidence to explain how different geologic processes shape Earths history over widely varying scales of space and time (e.g., chemical and physical erosion; tectonic plate processes; volcanic eruptions; meteor impacts; regional geographical features, including Alabama fault lines, Rickwood Caverns, and Wetumpka Impact Crater).

ES.6.6

Provide evidence from data of the distribution of fossils and rocks, continental shapes, and seafloor structures to explain past plate motions.

ES.6.7

Use models to construct explanations of the various biogeochemical cycles of Earth (e.g., water, carbon, nitrogen) and the flow of energy that drives these processes.

ES.6.8

Plan and carry out investigations that demonstrate the chemical and physical processes that form rocks and cycle Earths materials (e.g., processes of crystallization, heating and cooling, weathering, deformation, and sedimentation.

ES.6.9

Use models to explain how the flow of Earths internal energy drives a cycling of matter between Earths surface and deep interior causing plate movements (e.g., mid-ocean ridges, ocean trenches, volcanoes, earthquakes, mountains, rift valleys, volcanic islands).

EU.6.1

Create and manipulate models (e.g., physical, graphical, conceptual) to explain the occurrences of day/night cycles, length of year, seasons, tides, eclipses, and lunar phases based on patterns of the observed motions of celestial bodies.

EU.6.2

Construct models and use simulations (e.g., diagrams of the relationship between Earth and manmade satellites, rocket launch, International Space Station, elliptical orbits, black holes, life cycles of stars, orbital periods of objects within the solar system, astronomical units and light years) to explain the role of gravity in affecting the motions of celestial bodies (e.g., planets, moons, comets, asteroids, meteors) within galaxies and the solar system.

EU.6.3

Develop and use models to determine scale properties of objects in the solar system (e.g., scale model representing sizes and distances of the sun, Earth, moon system based on a one-meter diameter sun).

HA.6.15

Analyze evidence (e.g., databases on human populations, rates of consumption of food and other natural resources) to explain how changes in human population, per capita consumption of natural resources, and other human activities (e.g., land use, resource development, water and air pollution, urbanization) affect Earths systems.

HA.6.16

Implement scientific principles to design processes for monitoring and minimizing human impact on the environment (e.g., water usage, including withdrawal of water from streams and aquifers or construction of dams and levees; land usage, including urban development, agriculture, or removal of wetlands; pollution of air, water, and land).